
Response to Instruction and Intervention in Mathematics

A Candid Look at Where We Stand with the Evidence Base

June 15, 2010

Overview of Session

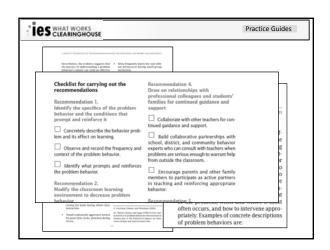
- 1. What is a practice guide
- 2. Overview of levels of evidence
- 3. Brief background on RTII
- 4. Highlights on what to teach and how to teach effectively in Tier 2 and Tier 3
 - ✓ Will include Think-Pair-Share activities, so
 - ✓ Pick a partner now

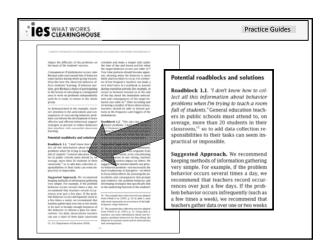
	-	

Structure of the Practice Guide

- Recommendations
- How to carry out the recommendations
- Levels of evidence
- Potential roadblocks & suggestions

Downloadble for free at IES website (information is on handout)


The Research Evidence


- The panel considered:
 - High quality experimental and quasi-experimental studies.
 - Also examined studies of screening and progress monitoring measures for recommendations relating to assessment.

Evidence Rating

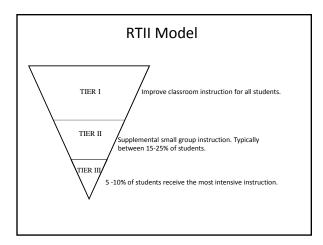
- Each recommendation receives a rating based on the strength of the research evidence.
 - Strong
 - Moderate
 - Low

•			
•			
•			
,			
•			

Panelists

- Russell Gersten (Chair), Instructional Research Group (IRG), Professor Emeritus University of Oregon
- Sybilla Beckmann, University of Georgia
- Ben Clarke, Pacific Institute for Research/Instructional Research Group
- Anne Foegen, Iowa State University
- Laurel Marsh, Howard Count Maryland School District
- Jon R. Star, Harvard University
- Bradley Witzel, Winthrop University

Search for Coherence


Panel works to develop 5 to 10 assertions that are:

- Forceful and useful
- · And COHERENT
- Do not encompass all things for all people
- Do not read like a book chapter or article
- · Cover grades K-8

Challenges for the panel:

- · State of math research
- Paucity of rigorous research on mathematics instruction

Jump start the process by using individuals with topical expertise and complementary views

Moderate Low Strong Strong
Strong
Strong
Moderate
Moderate
Low
Low

	1
Think Pair Share #1	
Which level of evidence is the	
biggest surprise for you?	
Why?	
	_
Recommendation 1	
Screen all students to identify those at risk	
for potential mathematics difficulties and	
provide interventions to students identified as at risk.	-
Level of Evidence: Moderate	
Evidence	
Technical evidence for validity and reliability of assessments:	
– K-2: Strong	
Grades 3 and up: Limited	

Evidence

- Content of Measures
 - Single aspect of number sense (e.g. strategic counting, magnitude comparison) for K/1.
 - For grades 2 and up: Probably measures reflecting major state standards, National Mathematics Panel Benchmarks, Core Standards when they evolve etc. (A lot of work to do here)

Examples of M	issing Num	ber Items
----------------------	------------	-----------

____, 20, 21

8, ____, 10

9, 10, ____

Magnitude Comparison

Which is bigger?

- 11 or 9?
- 79 or 95?
- 19 or 23?

Roadblocks

- Screening may identify students as at-risk who do not need services and miss students who do.
- <u>Suggested Approach:</u> Consider delaying screening in kindergarten and first grade until November.

Roadblocks

- Screening may identify large numbers of students who need support beyond the current resources of the school or district.
- Suggested Approach: Think Pair Share #2

TIER II & TIER III • Tier II — Is individual or small-group intervention in addition to the time allotted for core mathematics instruction. — Includes curriculum, strategies, and procedures designed to supplement, enhance, and support core classroom instruction. — Can backtrack and/or elaborate/reinforce classroom curriculum. • Tier III — Includes some one-to-one work and more intense methods.

All the following relate to Tier 2 and Tier 3 Participants were students with learning disabilities or problems in learning mathematics Recommendation 2 What to Teach in Intervention Instructional materials for students receiving interventions should focus indepth on: • Whole numbers in kindergarten through grade 6 • Rational numbers in grades 4 through 8 • Applications to geometry and measurement -Level of Evidence: Low Evidence • Consensus across mathematicians, professional organizations, and research panels - National Council Teachers of Mathematics (NCTM) and National Mathematics Advisory Panel (NMAP) - International comparisons - We made the leap to nature of intervention curricula...

What to Teach in Intervention (continued)

- Instruction includes:
 - procedures
 - -AND concepts
 - -AND word problems
- Whole number work consistently links operations to number properties

Commutative Property

- 8 + 7 = 7 + 8
- a + b = b + a

Associative

- $9 \times 3 \times 5 = 3 \times 9 \times 5$
- a(bc) = (ab)c

Distributive

7(13) = 7(10) + 7(3)

• a(b + c) = ab + ac

Fractions Defined

- Fractions arise naturally whenever we want to consider one or more parts of an object or quantity that is divided into pieces.
 - − ¼ of a pizza
 - $-\frac{1}{2}$ of the houses in the neighborhood
 - ¾ of a cup of water
- All of these examples use the word of, and all the fractions represent part of some object, collection of objects, or quantity. Source: Beckmann (2008), Mathematics for Elementary Teachers (2nd Ed.)
- Dilemma: how to convey this to kids
- Precursor: teacher must understand all this so that she or he can teach it

Recommendation 3

Instruction during the intervention should be **systematic and explicit**. This includes providing models of proficient problemsolving, verbalization of thought processes, guided practice, corrective feedback, and frequent cumulative review.

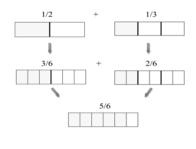
-Level of Evidence: Strong

Evidence

- Six randomized controlled trials met standards
- Key themes
 - 1. Extensive practice with feedback
 - 2. Let students provide rationale for their decisions
 - 3. Instructors and fellow students model approaches to problem solving

Example

• Assignment: Use the lowest common denominator when appropriate


1/2 + 1/3 =

• Student Response

 $\frac{1}{2} + \frac{1}{3} = \frac{2}{5}$

1	Λ

Explicit instruction helps with understanding of fractions

Developing Understanding of Fractions

• Concrete

Visual

• 0 Partitive model for 3/7

Line model for 4/7 Line model for 3/7 Line model for a_7 . 0 $\frac{3}{7}$ 1 $\frac{10}{7}$ 2 $\frac{17}{7}$ 3

Roadblocks

- Intervention curricula may not have explicit instruction and may underestimate the amount of practice and review needed by Tier 2 and Tier 3 students.
- Suggested Approach:
 - 1. Develop guidebooks for school staff to adapt
 - 2. Add new review problems.

Recommendation 4

Interventions should include instruction on solving word problems that is based on common underlying structures.

- Level of Evidence: Strong

Suggestions

- Teach students about the structure of various problem types, how to categorize problems, and how to determine appropriate solutions.
- Middle step –

Is it:

- Quantity (compare)?And/Or
- Change (over time)?

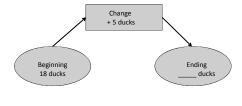
Explicitly Teach the Underlying Structure

- Addition and Subtraction Story Problems
 - Change Problems
 - A quantity is increased or decreased
 - Group Problems
 - Two groups are combined to form a large group
 - Compare Problems
 - $\bullet\,$ Two things are compared to find the difference

•	

Change, Group, or Compare?

Think Pair Share #3


- 1. Dillon leaped 32 inches. Marcus leaped 27 inches. How many more inches did Dillon leap? (Everyday Math 4)
- 2. Uranus has 11 rings. Neptune has 4 rings. How many rings do they have altogether? (sF/AW 3)
- 3. There are 18 ducks. Then 5 more swim over. How many ducks are there now? (Math Expressions 1)

Change Problems (temporal)

- Sequence
 - Beginning quantity
 - Action quantity is increased or decreased
 - Ending quantity
- Determine whether the change is more or less
 - Begin with quantity increase end up with more
 - Begin with quantity decrease end up with less
- Whether to add or subtract depends on whether there is an increase/decrease *and* which value is missing.

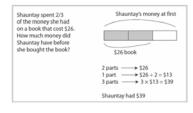
Visual Representation for Change Problems

• There are 18 ducks. Then 5 more swim over. How many ducks are there now?

-	
-	
-	

Solving similar problems that appear different

- Difficulties encountered by some students
 - Extraneous information
 - Different wording
- Even though the problems have a common underlying structure
- Creates problems for any student who needs intervention

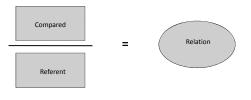

Source: Fuchs et al. (2007

Recommendation 5

Intervention materials should include opportunities for the student to work with visual representations of mathematical ideas, and interventionists should be proficient in the use of visual representations of mathematical ideas.

- Level of Evidence: Moderate

Strip diagrams can help students make sense of fractions.



Suggestions

- Use visual representations such as number lines, arrays, and strip diagrams.
- If necessary consider expeditious use of concrete manipulatives before visual representations. The goal should be to move toward abstract understanding.

Visual Representation for Multiplicative Compare

• Francine has 5 CDs. Millie has 3 times as many. How many CDs does Millie have? (SF/AW 3)

Recommendation 6

Interventions at all grades should devote about 10 minutes in each session to building fluent retrieval of basic arithmetic facts.

- Level of Evidence: Moderate

Suggestions

- Provide 10 minutes per session of instruction to build quick retrieval of basic facts.
- For student in K-2 grade explicitly teach strategies for efficient counting to improve the retrieval of math facts.
- Teach students in grades 2-8 how to use their knowledge of math properties to derive facts in their heads.

Recommendation 7

Monitor the progress of students receiving supplemental instruction and other students who are at risk.

-Level of evidence: Low

Evidence

- Non-experimental studies demonstrating the technical adequacy of progress monitoring measures.
- General outcome measures reflecting concepts and computation objectives for the grade level.
- Greater evidence in elementary grades.

'.		
•		
•		
•		
•		
•		
•		

Suggestions

- Monitor the progress of Tier 2, Tier 3 and borderline Tier 1 students at least once a month using grade appropriate general outcome measures.
- Use curriculum-embedded assessments in intervention materials
 - Frequency of measures can vary every day to once every week.
 - Develop an understanding of their technical characteristics

Think Pair Share #4

- How could you develop an understanding of the technical characteristics of curriculum embedded tests?
 - Reliability
 - Are forms equivalent?
 - Who could help?

Recommendation 8

Include motivational strategies in tier 2 and tier 3 interventions.

-Level of Evidence: Low

-		
-		

Roadblocks

- Rewards can reduce genuine interest in mathematics by directing student attention to gathering rewards rather than learning math.
- <u>Suggested Approach:</u> Rewards have not shown to reduce intrinsic interest. As students become more successful rewards can be faded so student success becomes an intrinsic reward.

Questions?

Resources

- Center on Instruction (COI)
 http://www.centeroninstruction.org/resources.cfm?category=math&subcategory=&grade_start=&grade_end=#226
- National Center for Learning Disabilities (NCLD) RTI Action Network http://www.rtinetwork.org/
- Glover, T. A., & Vaughn, S. (2010). The promise of response to intervention: Evaluating current science and practice. New York: Guilford Press.
- WWC Practice Guide http://ies.ed.gov/ncee/wwc/publications/practiceguides/

Thank you	
,	
Contact Information:	
http://www.inresg.org/	